Mean, Median, Mode, and Range Definitions

Contributed by:
NEO
This pdf includes the following topics:-
Mean with examples
Median with examples
Mode with examples
Range with examples
1. Mean, Median, Mode, and Range Definitions
Mean :
The "Mean" is computed by adding all of the numbers in the data
together and dividing by the number elements contained in the data set.
Example :
Data Set = 2, 5, 9, 3, 5, 4, 7
Number of Elements in Data Set = 7
Mean = ( 2 + 5 + 9 + 7 + 5 + 4 + 3 ) / 7 = 5
Median :
The "Median" of a data set is dependant on whether the number of
elements in the data set is odd or even. First reorder the data set
from the smallest to the largest then if the number of elements
are odd, then the Median is the element in the middle of the data set.
If the number of elements are even, then the Median is the average
of the two middle terms.
Examples : Odd Number of Elements
Data Set = 2, 5, 9, 3, 5, 4, 7
Reordered = 2, 3, 4, 5, 5, 7, 9
^
Median = 5
Examples : Even Number of Elements
Data Set = 2, 5, 9, 3, 5, 4
Reordered = 2, 3, 4, 5, 5, 9
^^
Median = ( 4 + 5 ) / 2 = 4.5
Math-Aids.Com
2. Mean, Median, Mode, and Range Definitions
Mode :
The "Mode" for a data set is the element that occurs the most often.
It is not uncommon for a data set to have more than one mode.
This happens when two or more elements accur with equal frequency
in the data set. A data set with two modes is called bimodal.
A data set with three modes is called trimodal.
Examples : Single Mode
Data Set = 2, 5, 9, 3, 5, 4, 7
Mode = 5
Examples : Bimodal
Data Set = 2, 5, 2, 3, 5, 4, 7
Modes = 2 and 5
Examples : Trimodal
Data Set = 2, 5, 2, 7, 5, 4, 7
Modes = 2, 5, and 7
Range :
The "Range" for a data set is the difference between the largest value and
smallest value contained in the data set. First reorder the data set from
smallest to largest then subtract the first element from the last element.
Examples :
Data Set = 2, 5, 9, 3, 5, 4, 7
Reordered = 2, 3, 4, 5, 5, 7, 9
Range = ( 9 - 2 ) = 7
Math-Aids.Com